Questions 1 - 9
Contents
Questions 1 - 9#
These questions examine various properties of complex numbers.
Q1#
If \(z_1 =2+i\) and \(z_2 =-1-3i/2\)
calculate
(a) \(z_1 + z_2\)
(b) \(z_1 - z_2\)
(c) \(-iz_1z_2\)
Q2#
(a) If \(i^2=-1\), what are \(i^3,\;i^4,\;i^5\), and \(i^6\)?
(b) What relationship links positive powers of i?
Q3#
If \(z = a - ib\) what is \(i^3z\)?
Q4#
If \(z=3+4i\) find \(z^2\) and the modulus and argument of \(z^2\).
Q5#
Calculate \(z = (2 - 5i)(3 + i) + 3i\), and find the modulus and argument of the result.
Q6#
Express the number \(\displaystyle \frac{5 - i}{2-3i}\) in the form \(z = a + bi\) and find its modulus and argument.
Q7#
Simplify \(z = (2 - 5i)(3 + i)/(3 - i)\) and find the modulus and argument of the result.
Q8#
Find the modulus and argument of
(a) \(\cos(\theta) - i \sin(\theta)\),
(b) \(1-i\tan(\theta)\), where \(0 \lt \theta \lt \pi/2\) in both cases.
Q9#
If \(w=z^2\) and \(z=x+iy\) and \(w=u+it\), find \(u\) and \(t\).